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Optimality Conditions of Vector Set-Valued Optimization Problem 

Involving Relative Interior  

 

Saw Win
  

  
Abstract 

Firstly, a generalized weak convexlike set-valued map involving the relative interior is 

introduced in separated locally convex spaces. Secondly, a separation property is 

established. Finally, some optimality conditions, including the generalized Kuhn-Tucker 

condition and scalarization theorem, are obtained.  

 

1. Preliminaries 

        Let X, Y and Z be three separated locally convex spaces, and let 0 denote the zero 

element for every space. Let K be a nonempty subset of Y. The generated cone of K is 

defined as cone(K) { a | a K, 0}.      A cone K Y is said to be pointed if  

K ( K) {0}.    A cone K Y  is said to be nontrivial if K {0}  and K Y.    

Let *Y and *Z stand for the topological dual space of Y and Z, respectively. From now 

on, let C and D be nontrivial pointed closed-convex cones in Y and Z, respectively. The 

topological dual cone C  and strict topological dual cone iC  of C are defined as 
* * *

i * * *

C {y Y | y, y 0, y C},

C {y Y | y, y 0, y C \{0}},





    

    
     (1) 

where *y, y  denotes the value of the linear continuous functional *y at the point y. The 

meanings of D  and iD  are similar. 

 Let K be a nonempty subset of Y. We denote by cl(K), int(K), and aff(K) the closed 

hull, topological interior, and affine hull of K, respectively. 

 

Definition 1.1      Let K be a subset of Y. The relative interior of K is the set         

 ri(K) x K | U,a neighborhood of x, such that U aff (K) K .         (2) 

 

 Now, we give some basic properties about the relative interior. 

 

Lemma 1.2 Let K be a subset of Y. Let 
0k K, k ri(K), R,and (0,1].     Then, (a) 

ri(K) ri( K);             

(b) if K is convex, then 
0(1 )k k ri(K).          (3) 

Proof  (a) Since aff (K) aff ( K),    it is clear that ri(K) ri( K).    

(b) Since k ri(K), there exists V, a neighborhood of 0, such that  

   k V aff (K) K.       (4) 

By (4), we have 

   k V ( aff (K)) K.        (5) 

It follows from (5) that  

     0 0 0(1 )k k V (1 )k aff (K) (1 )k K.          (6) 
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It is clear that 

  0(1 )k aff (K) aff (K).          (7) 

Since K is convex, we have 

  0(1 )k K K.           (8) 

By (6), (7), and (8), we obtain 

   0(1 )k k V aff (K) K,           (9) 

which implies that 

  
0(1 )k k ri(K).                   (10) 

 

Remark 1.3  By Lemma 1.2, if K is a convex cone, then ri(K) {0}  is a convex cone.   

 

Lemma 1.4   If K is a convex cone of Y, then 

  K ri(K) ri(K).                   (11) 

 

Proof  If ri(K) , it is clear that the conclusion holds. If ri(K) , we have 

  
1 1

K ri(K) 2 K ri(K) 2ri(K) ri(2K) ri(K),
2 2

 
      

 
            (12) 

where Lemma 1.2(b) is used in the first inclusion relation and Lemma 1.2(a) is used in the 

second equality. 

 

Lemma 1.5   Let K Y be a closed-convex set with ri(K) . If 0 ri(K), then there 

exists * *y Y \{0}  such that *k, y 0 for each k K.     

 

2. Separation Property  

 From now on, we suppose that ri(C) and ri(D) .   Let A be a nonempty subset 

of X and YF: A 2  be a set-valued map on A. Write 
x A

F(A) F(x).


   

 

Definition 2.1      Let A be a nonempty subset of X. A set valued map YF: A 2  is called 

C-convexlike on A if the set F(A) C  is convex. 

 

Definition 2.2    Let A be a nonempty subset of X. A set-valued map YF: A 2  is called C-

weak convexlike on A if the set F(A) ri(C)  is convex. 

 

Definition 2.3        Let A be a nonempty subset of X. A set-valued map YF: A 2  is called 

generalized C-weak convexlike on A if the set cone(F(A)) ri(C)  is convex. 

 

 Now, we consider the following two systems. 

System 1: There exists 0 0x Asuch that F(x ) ( ri(C)) .     

System 2: There exists *y C \{0} such that *y, y 0, for all y F(A).    

 

Theorem 2.4    Let A be a nonempty subset of X. 
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(i)Suppose that YF: A 2  is generalized C-weak convexlike on A and 

ri(cl(coneF(A) ri(C))) ri(coneF(A) ri(C)) .     If System1 has no solution, then System 

2 has solution. 

(ii)If * iy C  is a solution of System2, then System1 has no solution. 

Proof  (i)Firstly, we assert that 0 cone(F(A)) ri(C).   Otherwise, there exist 

0x A, 0    such that 00 F(x )) ri(C).   

Case 1. If 0,   then 0 ri(C).  Thus, there exists U, a neighborhood of 0, such 

  U aff (C) C.                   (13) 

Without loss of generality, we suppose that U is symmetric. It follows from (13) that 

  U ( aff (C)) ( C).     (14) 

It is clear that aff(C) is a linear subspace of Y. Therefore, aff (C) aff (C).   By (14), we have 

  U aff (C) ( C).                    (15) 

By (13) and (15),  we obtain 

  U aff (C) C ( C).     (16) 

Since C is nontrivial, there exists c C \{0}.  By the absorption of U, there exists , a  

sufficiently small positive number, such that 

  c U aff (C) C ( C),                      (17) 

which contradicts that C is pointed.  

Case 2. If 0,  there exists 0 0y F(x )  such that 
0

1
y ri(C) ri(C),

 
   

 
 which contradicts 

F(x) ( ri(C)) ,   for all x A.  

Therefore, our assertion is true. Thus, we obtain  

  0 ri(cl(cone(F(A)) ri(C))).   (18) 

Since F is generalized C-weak convexlike on A, cl(cone(F(A)) ri(C)) is a closed-convex 

set. By Lemma 1.5, there exists * *y Y \{0}  such that  

  *y, y 0, y cl(cone(F(A)) ri(C)).     (19) 

So,  *F(x) c, y 0, x A,c ri(C), 0.         (20) 

Letting 0   in (20), we obtain 

  *c, y 0, c ri(C).                    (21) 

We assert that *y C .  Otherwise, there exists c C  such that *c , y 0,  hence, 

*c , y 0,   for all 0.   By Lemma 1.4, we have 

  c c ri(C), c ri(C).                     (22) 

It follows from (21) that  

  *c c, y 0, 0,c ri(C).                     (23) 

Thus, we obtain 

  * *c , y c, y 0, 0,c ri(C).       (24) 

On the other hand, (24) does not hold when 

*

*

c, y
0.

c , y
   


 Therefore, *c, y 0,  for all 

c C,  that is, *y C .  

Letting 1   in (20), we have 
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  *F(x) c, y 0, x A,c ri(C).                    (25) 

Taking 0 n n
n

c ri(C), 0, lim 0,


      we have 

  *

n 0F(x) c , y 0, x A,n N.      (26) 

Limiting (26), we obtain *F(x), y 0,  for all x A.  

(ii) Since * iy C  is a solution of System 2, we have 

  *y, y 0, y F(A).    (27) 

Now, we suppose that System1 has solution. Then, there exists 0x A  such that 

0F(x ) ( ri(C)) .    Thus, there exists 
0 0y F(x )  such that 

0y ri(C).  It is clear that 

0y 0.   So, we have 

  *

0y , y 0,                   (28) 

which contradicts (27). 

 

3. Optimality Conditions 

 Let YF: A 2  and ZG : A 2  be two set-valued maps from A to Y and Z, 

respectively. Now, we consider the following vector optimization problem of set-valued 

maps: 

  
min F(x)

subject to G(x) D .  
                                                            (VP) 

 

 

The feasible set of (VP) is defined by 

  S {x A | G(x) D }.                               (29) 

Now, we define 

      
0 0

0 0

W Min(F(S),C) {y F(S) | y y ri(C), y F(S)},

P Min(F(S),C) {y F(S) | ( C) cl(cone(F(S) C y )) {0}}.

     

      
       (30) 

 

Definition 3.1          A point 0x  is called a weakly efficient solution of (VP) if 0x S  and 

0F(x ) W Min(F(S),C) .   A point pair 0 0(x , y ) is called a weak minimizer of (VP) if 

0 0y F(x ) W Min(F(S),C).      

 

Definition 3.2          A point 0x  is called a Benson properly efficient solution of (VP) if 

0x S  and 0F(x ) P Min(F(S),C) .   A point pair 0 0(x , y ) is called a Benson proper 

minimizer of (VP) if 0 0y F(x ) P Min(F(S),C).      

 

 Let I(x) F(x) G(x),   for all x A.  It is clear that I is a set-valued map from A to 

Y Z,  where Y Z  is a separated local convex space with nontrivial pointed closed-convex 

cone C D.  The topological dual space of Y Z  is * *Y Z ,  and the topological dual cone of 

C D  is C D .   

 By Definition 2.3, we say that the set-valued map Y ZI : A 2   is generalized C D -

weak convexlike on A if coneI(A) ri(C D)   is a convex set of Y Z.  
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Theorem 3.3    Let * *ri(cl(coneI (A) ri(C D))) ri(coneI (A) ri(C D)) .       Suppose 

that the following conditions hold: 

(i) 0 0(x , y ) is a weak minimizer of (VP); 

(ii) *I (x)  is generalized C D -weak convexlike on A, where  

      *

0I (x) (F(x) y ) G(x).    Then, there exists * *(y , z ) C D    with  

      * *(y ,z ) (0,0)  such that   

  
 * * *

0
x A

*

0

inf F(x), y G(x), z y , y ,

inf G(x ), z 0.


 


    (31) 

 

Proof  According to Definition 3.1, we have 

   0y F(S) ri(C) .          (32)                       

It is clear that *

0I (x) I(x) (y ,0),   for all x A.  We assert that 

  *I (x) ri(C D) , x A.       (33) 

Otherwise, there exists x A  such that 

  *I (x) ri(C D) .                    (34) 

It is easy to check that ri(C D) ri(C) ri(D).    

Therefore, *I (x) (ri(C) ri(D)) .     (35) 

By (35), we obtain  0y F(x) ri(C) ,    (36) 

          G(x) ri(D) .    (37) 

It follows from (37) that x S. Thus, by (36), we have 

   0y F(S) ri(C) ,                   (38) 

which contradicts (32). Therefore, (33) holds. 

By Theorem 2.4, there exists * *(y , z ) C D    with * *(y ,z ) (0,0)  such that  

  * * *I (x), (y , z ) 0, x A.    (39) 

That is,  

  * * *

0F(x), y G(x), z y , y , x A.      (40) 

Since 0x S, there exists 0p G(x )  such that p D.   

Because *z D , we obtain *p,z 0.  

On the other hand, taking 0x x  in (40), we get  

  * * *

0 0y , y p, z y , y .                                                                 (41) 

It follows that *p,z 0.  So, *p,z 0.  Thus, we have    

  * * *

0 0 0y , y F(x ), y G(x ), z .                 (42) 

Therefore, it follows from (40) and (42) that  

   * * *

0
x A
inf F(x), y G(x), z y , y .


                (43) 

Finally, taking again 0x x  in (40), we obtain  

  * * *

0 0 0y , y G(x ), z y , y .                 (44) 
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So, *

0G(x ), z 0.  We have shown that there exists 0p G(x )  such that *p,z 0.  

Thus, we have  

  *

0inf G(x ), z 0.                  (45) 

Theorem 3.4  Suppose that the following conditions hold: 

(i) 0x S;  

(ii) there exist 0 0y F(x )  and  * * iy ,z C D    such that 

   * * *

0
x A
inf F(x), y G(x), z y , y .


                (46) 

Then, 0x  is a weakly efficient solution of (VP). 

Proof       By condition (ii), we have 

  * *

0F(x) y , y G(x), z 0, x A.                   (47) 

Suppose to the contrary that 0x  is not a weakly efficient solution of (VP). 

Then, there exists x S such that  0y F(x ) ri(C) .    

Therefore, there exists t F(x ) such that 0y t ri(C) C \{0}.    

Thus, we obtain 

  *

0t y , y 0.                   (48) 

Since x S, there exists q G(x ) such that q D.   

Hence,  *q,z 0.                   (49) 

Adding (48) to (49), we have 

  * *

0t y , y q, z 0,                   (50) 

which contradicts (47). Therefore, 0x  is a weakly efficient solution of (VP). 

 

 The following example will be used to illustrate Theorem 3.4. 

 

Example 3.5      Let   2

1 1X Y Z R , C D y ,0 | y 0 ,      and    A 1,0 1,2 .  The 

set-valued map YF: A 2  is defined as follows: 

  
  

  

1 2 1 1 2

1 2 1 2 1

F(1,0) y , y | y 1, y y 2 ,

F(1,2) y , y | y 2,1 y y .

   

   
              (51) 

The set-valued map ZG : A 2  is defined as follows: 

  
  

  

1 2 1 2

1 2 1 2

G(1,0) y , y | 1 y 0, y 0 ,

G(1, 2) y , y | 1 y 0,0 y 1 .

    

     
              (52) 

Let    * *

0 0 0 1 2 1 2 1 2 1x (1,0), y (1,1) F(x ), y , y , y y y ,and y , y , z y .        

It is clear that all conditions of Theorem 3.4 are satisfied. 

Therefore, (1,0) is a weakly efficient solution of (VP). 

 

Now, we consider the following scalar optimization problem  VP


of (VP): 

  
min F(x),

subject to x S,




              VP


 

where *Y \{0}.  
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Definition 3.6  If 0 0 0x S, y F(x )  and  

0
y , y, , y F(S),                     (53) 

then 0x  and  0 0x , y are called a minimal solution and a minimizer of  VP

 respectively. 

 

Lemma 3.7   Let 1 2U , U Y  be two closed-convex cones such that 1 2U U {0}.   If 2U  

is pointed and locally compact, then 
21( U ) U .     

  

Lemma 3.8  If V is a subset of Y, then  

(i) cl(cone(V ri(C))) cl(coneV ri(C)),    

(ii) cl(cone(V ri(C))) cl(cone(V C)).    

Proof  (i) If V ,  it is obvious that 

  cl(cone(V ri(C))) cl(coneV ri(C)).                 (54) 

If V ,  there exists c ri(C). It is clear that  

  c coneV ri(C), (0, ).                    (55) 

Letting 0  in (55), we have  

  0 cl(coneV ri(C)).                   (56) 

Now, we will show that 

  cone(V ri(C)) (coneV ri(C)) {0}.                  (57) 

Let y cone(V ri(C)).     

Case 1. If y 0, then y (coneV ri(C)) {0}.    

Case 2. If y 0, there exist 0, V,   and c ri(C)  such that 

  y ( c) c coneV ri(C) (coneV ri(C)) {0}.              (58) 

Therefore, (57) holds. Since Y is separated, by (56) and (57), we obtain 

  

cl(cone(V ri(C))) cl((coneV ri(C)) {0})

cl(coneV ri(C)) cl{0}

cl(coneV ri(C)) {0}

cl(coneV ri(C)).

   

  

  

 

             (59) 

That is, cl(cone(V ri(C))) cl(coneV ri(C)).                 (60) 

Using the technique of Lemma 2.1 in [2], we easily obtain 

  coneV ri(C) cl(cone(V ri(C))).                  (61) 

So,  cl(coneV ri(C)) cl(coneV ri(C)).                 (62) 

By (60) and (62), we have cl(cone(V ri(C))) cl(coneV ri(C)).    

(ii) It is obvious that 

  cl(cone(V ri(C))) cl(cone(V C)).                 (63) 

We will show that 

  cone(V C) cl(cone(V ri(C))).                  (64) 

It is clear that (64) holds if  V .  Now, we suppose that V .  

Let y cone(V C),  then there exist 0, V,    and c C  such that 

  y ( c).                     (65) 

Since ri(C) , there exists 0c ri(C).  It follows from Lemma 1.4 that 

  0 0

1
c y c c cone(V ri(C)), 0.

  
          

  
            (66) 
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Letting   in (66), we have 

  y cl(cone(V ri(C))),                  (67) 

which implies that (64) holds. By (64), we obtain 

  cl(cone(V C)) cl(cone(V ri(C))).                 (68) 

By (63) and (68), we have 

  cl(cone(V ri(C))) cl(cone(V C)).                 (69) 

 

Theorem 3.9  Suppose that the following conditions hold: 

(i) C Y  is locally compact; 

(ii) 0 0(x , y ) is a Benson proper minimizer of (VP); 

(iii) 0F y  is generalized C-weak convexlike on S. 

Then, there exists iC  such that 0 0(x , y ) is a minimizer of (VP) .  

Proof  By condition (ii), we have  

  0( C) cl(cone(F(S) C y )) {0}.                    (70) 

By Lemma 3.8 and condition (iii), we obtain that 0cl(cone(F(S) C y ))   is a closed-convex 

cone.  

Thus, condition of Lemma 3.7  are satisfied. Therefore, there exists iC  such that  

  
0(cl(cone(F(S) C y ))) .                             (71) 

Since 0 0F(S) y cl(cone(F(S) C y )),     we obtain 

  0y y , 0, y F(S).                      (72) 

That is, 0y, y , , y F(S).                      (73) 

So, 0 0(x , y )  is a minimizer of (VP) .  

 

Conclusion 

 In this paper, our results are very useful to form Lagrange multipliers rule and 

establish duality theory. 
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